Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

The set Q consists of the following terms:

ack(0, x0)
ack(s(x0), 0)
ack(s(x0), s(x1))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACK(s(x), s(y)) → ACK(s(x), y)
ACK(s(x), s(y)) → ACK(x, ack(s(x), y))
ACK(s(x), 0) → ACK(x, s(0))

The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

The set Q consists of the following terms:

ack(0, x0)
ack(s(x0), 0)
ack(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

ACK(s(x), s(y)) → ACK(s(x), y)
ACK(s(x), s(y)) → ACK(x, ack(s(x), y))
ACK(s(x), 0) → ACK(x, s(0))

The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

The set Q consists of the following terms:

ack(0, x0)
ack(s(x0), 0)
ack(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACK(s(x), s(y)) → ACK(s(x), y)
ACK(s(x), s(y)) → ACK(x, ack(s(x), y))
ACK(s(x), 0) → ACK(x, s(0))

The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

The set Q consists of the following terms:

ack(0, x0)
ack(s(x0), 0)
ack(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACK(s(x), s(y)) → ACK(x, ack(s(x), y))
ACK(s(x), 0) → ACK(x, s(0))
The remaining pairs can at least be oriented weakly.

ACK(s(x), s(y)) → ACK(s(x), y)
Used ordering: Combined order from the following AFS and order.
ACK(x1, x2)  =  x1
s(x1)  =  s(x1)
ack(x1, x2)  =  ack(x2)
0  =  0

Lexicographic Path Order [19].
Precedence:
ack1 > [s1, 0]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACK(s(x), s(y)) → ACK(s(x), y)

The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

The set Q consists of the following terms:

ack(0, x0)
ack(s(x0), 0)
ack(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACK(s(x), s(y)) → ACK(s(x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACK(x1, x2)  =  ACK(x1, x2)
s(x1)  =  s(x1)

Lexicographic Path Order [19].
Precedence:
[ACK2, s1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

The set Q consists of the following terms:

ack(0, x0)
ack(s(x0), 0)
ack(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.